Dose–Response Modeling Under Simple Order Restrictions Using Bayesian Variable Selection Methods
نویسندگان
چکیده
منابع مشابه
Bayesian Variable Selection Under Collinearity
In this article we highlight some interesting facts about Bayesian variable selection methods for linear regression models in settings where the design matrix exhibits strong collinearity. We first demonstrate via real data analysis and simulation studies that summaries of the posterior distribution based on marginal and joint distributions may give conflicting results for assessing the importa...
متن کاملPopulation-based reversible jump Markov chain Monte Carlo methods for Bayesian variable selection and evaluation under cost limit restrictions
The measurement and improvement of the quality of health care are important areas of current research and development. A judgement of appropriateness of medical outcomes in hospital quality-of-care studies must depend on an assessment of patient sickness at admission to hospital. Indicators of patient sickness often must be abstracted from medical records, and some variables are more expensive ...
متن کاملNonparametric Regression using Bayesian Variable Selection
This paper estimates an additive model semiparametrically, while automatically selecting the significant independent variables and the app~opriatc power transformation of the dependent variable. The nonlinear variables arc modeled as regression splincs, with significant knots selected fiom a large number of candidate knots. The estimation is made robust by modeling the errors as a mixture of no...
متن کاملBayesian recursive variable selection
In this work we introduce a new model space prior for Bayesian variable selection in linear regression. This prior is designed based on a recursive constructive procedure that randomly generates models by including variables in a stagewise fashion. We provide a recipe for carrying out Bayesian variable selection and model averaging using this prior, and show that it possesses several desirable ...
متن کاملBayesian Shrinkage Variable Selection
We introduce a new Bayesian approach to the variable selection problem which we term Bayesian Shrinkage Variable Selection (BSVS ). This approach is inspired by the Relevance Vector Machine (RVM ), which uses a Bayesian hierarchical linear setup to do variable selection and model estimation. RVM is typically applied in the context of kernel regression although it is also suitable in the standar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Biopharmaceutical Research
سال: 2014
ISSN: 1946-6315
DOI: 10.1080/19466315.2013.855472